

GeoLib Polygon Operations

 Document version 1.0

© GeoLib

www.geolib.co.uk

support@geolib.co.uk

 GeoLib Polygon Operations ©
2

Contents

Introduction 3

Basic functions 3

C2DPolygon 3
C2DPolyArc 5
C2DPolyBase 6
Holed Polygons 6

Function summary 7

Polygon Boolean Operations 8
Basic Function Calls 8
Time 9
Degenerate Handling 9

Coding Concepts 12

 GeoLib Polygon Operations ©
3

Introduction

GeoLib has 4 main types of polygons, which result from them either having curved

lines or straight lines only, and containing holes or not. The classes and their base

classes which represent these are as shown below.

Basic functions

C2DPolygon

This class represents a polygon with straight edges and no holes. It can be non-convex

but it is assumed to be simple i.e. not self-intersecting. This type of polygon can be

created from a set of points, which will be ordered in a clockwise orientation as

follows:

This type of polygon can also be created from an array of points as follows:

If the order of the points is unknown, they can be automatically reordered upon

creation. The reordering is done to minimise the perimeter and eliminate crossing

lines.

 GeoLib Polygon Operations ©
4

The above code will reorder the polygon to eliminate the crossing line and will result

in a simple square.

The following code shows how to call various other simple functions on the polygon.

 GeoLib Polygon Operations ©
5

C2DPolyArc

This class inherits from the C2DPolyBase class and provides an interface to it so that

curved lines can be added to the polygon. The polygon is created in a different way to

the simple straight lined polygon, as each point has to be added with consideration to

the curve in the line between it and the proceeding point. It is still perfectly acceptable

to add straight lines. To create a polygon, the start point is set then subsequent points

are added through the “LineTo” function. If the line is to be curved, the radius of the

curve must be provided, whether the curve is to the right of the 2 points, and whether

the arc’s centre is to the right of the 2 points. Finally the polygon is closed with either

a straight line or an arc. Note that the final point you add must not be the starting

point as this is done for you when the polygon is closed.

See Table 1 for a full list of functions for this and other polygon classes.

 GeoLib Polygon Operations ©
6

C2DPolyBase

This class forms the base for both the C2DPolygon and the C2DPolyArc and most of

the functionality is contained within this. At its core is a set of pointers to the abstract

class C2DLineBase. In other words, at the core of GeoLib, a polygon is just a set of

connected lines of some sort. GeoLib currently supports straight and arced lines but

there is no reason why other lines cannot be used within the polygon base class as

long as they can inherit from the abstract line base class. This base class can be used

directly if required although in most cases one of the inherited types would be more

appropriate.

Holed Polygons

Holed polygons are simply polygons with holes in them and are managed through 3

similar classes; C2DHoledPolyBase, C2DHoledPolygon and C2DHoledPolyArc. The

base class contains most of the functionality with the other 2 mainly providing an

interface to it. This class has a pointer to a rim and an array of pointers to holes, all of

which are held as C2DPolyBase pointers. Through the interface classes

C2DHoledPolygon and C2DHoledPolyArc, the user can ensure that, for example,

only straight lined polygons are holes or rims, although direct use of the base class

and mixed types is also fine. The following is an example of how they can be used. It

is important to note that holes and rims can be set directly as pointers or as copies or

those provided. If pointers are handed over then they will be deleted when the holed

polygon is deleted so it is wrong to hand over a pointer to a polygon created on the

stack.

As mentioned, the base class can be used as shown in the example below.

 GeoLib Polygon Operations ©
7

No. Function C
2

D
P

o
ly

B
a

s
e

C
2

D
P

o
ly

g
o

n

C
2

D
P

o
ly

A
rc

C
2

D
h

o
le

d

P
o

ly
B

a
s
e

C
2

D
h

o
le

d

P
o

ly
g

o
n

C
2

D
h

o
le

d

P
o

ly
A

rc

1 Contains(C2DPoint) � � � � � �

2 Contains(C2DLineBase) � � � � � �

3 Contains(C2DPolyBase) � � � � � �

4 Contains(C2DHoledPolyBase) � � � � � �

5 HasCrossingLines � � � � � �

6 Distance(C2DPoint) � � � � � �

7 Distance(C2DLineBase) � � � � � �

8 Distance(C2DPolyBase) � � � � � �

9 IsWithinDistance(C2DPoint) � � � � � �

10 GetBoundingRect � � � � � �

11 GetPerimeter � � � � � �

12 Draw(Outline) � � � � � �

13 Draw(Filled) � � � � � �

14 Move � � � � � �

15 RotateToRight � � � � � �

16 Grow � � � � � �

17 Reflect(though point) � � � � � �

18 Reflect(through line) � � � � � �

19 Crosses(C2DLineBase) � � � � � �

20 Crosses(C2DPolyBase) � � � � � �

21 Overlaps(C2DPolyBase) � � � � � �

22 Overlaps(C2DHoledPolyBase) � � � � � �

23 Overlaps(returns avoidance vector) �

24 Avoid(C2DPolygon) �

25 SnapToGrid � � � � � �

26 GetNonOverlaps � � � � � �

27 GetUnions � � � � � �

28 GetOverlaps � � � � � �

29 GetBoolean � � � � � �

30 Project(on line) � � � � � �

31 Project(on vector) � � � � � �

32 CreateConvexHull �

33 CreateMorph �

34 CreateRegular �

35 CreateRandom � �

36 CreateConvexSubAreas �

37 GetConvexSubAreas �

38 IsConvex �

39 IsClockwise �

40 GetCentroid � � � �

41 GetArea � � � �

42 GetAreaSigned �

43 GetBoundingCircle �

Table 1 Polygon function summary

 GeoLib Polygon Operations ©
8

Table 1 shows the functions that each type of polygon supports. Some functions not

supported by the holed polygons are identical to those for the rim of the polygon.

Holed polygons are assumed to have contained holes that do not intersect. Validation

checks for all polygons can be called to ensure this.

The “Overlaps” function for the C2DPolygon can be used to return true if the polygon

overlaps another and also return the smallest vector required to move the polygon off

the other one. For concave polygons, convex sub areas need to be created first for an

accurate result; otherwise the result is for the corresponding convex hull.

Polygon Boolean Operations

Basic function calls

All types of polygons are capable of performing Boolean Operations on all others as

this functionality is held within the base class C2DPolyBase. These functions are used

to find the overlap, union or difference (non-overlap) between 2 polygons as

illustrated.

The code required to do this is shown below.

In all cases, the set of polygons to receive the result is a set of holed polygons even

though it is impossible in some cases to output polygons with holes. In this case the

result is a set of holed polygons which simply don’t have any holes. Other functions

are “GetOverlaps” and “GetNonOverlaps” and work in exactly the same way. In all

cases, if there is no overlap between the 2 polygons, no polygon is added to the set.

For example, the union of 2 non-intersecting polygons is both of them but nothing is

added to the set. Should the result still be required, the following code could be added.

 GeoLib Polygon Operations ©
9

Time

At the heart of the Boolean operations is the functionality to compute, very quickly,

the intersections between 2 sets of lines. The function that does this is held within the

C2DLineBaseSet class and the calling procedure is shown below.

This function is O(n log(n + k)), where n is the number of lines in the sets and k is

the number if intersections in the x-axis. This, together with extensive use of

bounding boxes makes execution time very quick.

GeoLib also includes an extremely efficient function to unify multiple polygons. This

time taken to do this is dependant upon the time to unify 2 and also the order in which

the polygons are combined.

Degenerate Handling

Polygon Boolean operations can be performed on what are known as degenerate cases

with potentially disastrous results. Typical examples of this are when a point from one

polygon coincides exactly with that of another, when a line crosses a point or when a

line overlaps another line. The reason these cases cause problems for computers is

that the execution of polygon Boolean operations relies on the detection of

intersections between polygons. In these cases, it is hard to determine whether there is

an intersection or not.

There are 2 general ways of dealing with this problem; one is to try to detect them and

to deal with every possibility (of which there are many), another is to avoid the

problem completely by ensuring it never happens (or almost never happens). GeoLib

takes the second approach and within this there are 2 optional ways of handling

degenerates. The fist uses a random permutation to move one polygon so that

 GeoLib Polygon Operations ©
10

coincident points and lines are extremely unlikely. The second is similar but uses the

concept of a grid with one polygon having points on the grid and another off the grid.

Both methods do involve a very slight distortion of the result but this is minute and

the grid-based technique has the advantage that it is known and manageable. In both

cases, although extremely unlikely, problems can occur in which case they are

reported so that the operation could be repeated with different settings.

Point Equality

In order to understand how GeoLib handles degenerates, it is first necessary to

understand what make 2 points equal. GeoLib uses double precision floating point

numbers to represent the x and y values for each point. In order to get around

computer rounding errors, 2 points are considered equal when they are very close to

each other. How close they need to be to each other also depends upon how close they

are to the origin (0, 0). The exact amount is 0.0000000001 (equality tolerance)

multiplied by the x or y value. For example, the point 100, 200 has a box around it

which is 0.00000002 and 0.00000004 wide and high respectively. All other points

within this box are considered equal. To put this into perspective, the proximity is

about 0.0001 millimetres in one kilometre.

Random Perturbation

This method simple takes a copy of one of the polygons and moves it a very small

amount before calculating the Boolean operation. The movement is calculated to be

up to 100 times more than the maximum possible equality value of a given polygon.

For example, the 1 kilometre sized polygon would be moved up to 0.01 millimetres.

Grid Based

This method is very similar in principle to the random perturbation method but is

based on a conceptual grid. All geometric entities, including polygons can be

“Snapped” to the grid, which means that all points are placed on vertices of the grid.

This involves minor movement to the shape is allows it to be managed. For example,

if dealing in kilometres, the grid can be set to 0.01 millimetres and the accuracy

known in advance. Boolean operations using grid methods involve snapping polygons

(or copies of them) to the grid, moving one of them off the grid by an amount

calculated to minimise problems, performing the operation and snapping the result

back to the grid.

Intersection of 2 Squares using grid based degenerate handling

The choice of Grid size is important as if it is too small, the chances of coincident

lines and points becomes high. Generally though, it should be possible to set the grid

 GeoLib Polygon Operations ©
11

to a very small value. To help manage the grid, a class is provided called CGrid that

allows the user to set the grid value and also help find a minimum recommended

setting given a bounding rectangle for the operation to be carried out.

There are 3 grid settings to use when performing Boolean operations as follows:

• Dynamic grid where the grid is automatically set to the minimum

recommended setting.

• Predefined grid where the user has already set a desired grid size.

• Pre defined grid pre snapped polygons, where, in addition, the polygons in

question are already snapped to the grid.

The following shows code examples for this.

As mentioned, there is still a very small chance of errors occurring but this can be

checked for using the following code.

 GeoLib Polygon Operations ©
12

Coding Concepts

All geometric entities are derived from the class C2Dbase, an abstract class with pure

virtual functions such as Move that all geometric entities must override.

At the heart of all polygon functionality is the C2DPolyBase, which contains a

collection of lines, their corresponding bounding rectangles and the bounding

rectangle for the whole polygon. The extensive use of bounding rectangles is one

reason why GeoLib is so fast.

The lines that form the polygon are held as pointers to the abstract base class

C2DLineBase. This allows for a great deal of flexibility to create other types of

polygons. In other words, GeoLib’s concept of a polygon is just that it is a set of

ordered lines of some sort that are joined up. The set of functions that a line must have

in order to derive from the C2DLineBase are as follows:

• “Crosses” – find the intersection of itself with any other type of line.

• “Distance” – return the minimum distance from itself to a point or to another

line.

• “GetPointFrom” – return the starting point.

• “GetPointTo” – return the end point.

• “GetLength” – return its length.

• “Reverse Direction” – reverses its direction.

• “GetSubLines” – given a set of points on the line, return the set of sub lines

given by breaking the line on those points.

